von Mises-Fisher distributions and their statistical divergence
Toru Kitagawa and
Jeff Rowley
Papers from arXiv.org
Abstract:
The von Mises-Fisher family is a parametric family of distributions on the surface of the unit ball, summarised by a concentration parameter and a mean direction. As a quasi-Bayesian prior, the von Mises-Fisher distribution is a convenient and parsimonious choice when parameter spaces are isomorphic to the hypersphere (e.g., maximum score estimation in semi-parametric discrete choice, estimation of single-index treatment assignment rules via empirical welfare maximisation, under-identifying linear simultaneous equation models). Despite a long history of application, measures of statistical divergence have not been analytically characterised for von Mises-Fisher distributions. This paper provides analytical expressions for the $f$-divergence of a von Mises-Fisher distribution from another, distinct, von Mises-Fisher distribution in $\mathbb{R}^p$ and the uniform distribution over the hypersphere. This paper also collect several other results pertaining to the von Mises-Fisher family of distributions, and characterises the limiting behaviour of the measures of divergence that we consider.
Date: 2022-02, Revised 2022-11
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2202.05192 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.05192
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).