Beyond Trading Data: The Hidden Influence of Public Awareness and Interest on Cryptocurrency Volatility
Zeyd Boukhers,
Azeddine Bouabdallah,
Cong Yang and
Jan J\"urjens
Papers from arXiv.org
Abstract:
Since Bitcoin first appeared on the scene in 2009, cryptocurrencies have become a worldwide phenomenon as important decentralized financial assets. Their decentralized nature, however, leads to notable volatility against traditional fiat currencies, making the task of accurately forecasting the crypto-fiat exchange rate complex. This study examines the various independent factors that affect the volatility of the Bitcoin-Dollar exchange rate. To this end, we propose CoMForE, a multimodal AdaBoost-LSTM ensemble model, which not only utilizes historical trading data but also incorporates public sentiments from related tweets, public interest demonstrated by search volumes, and blockchain hash-rate data. Our developed model goes a step further by predicting fluctuations in the overall cryptocurrency value distribution, thus increasing its value for investment decision-making. We have subjected this method to extensive testing via comprehensive experiments, thereby validating the importance of multimodal combination over exclusive reliance on trading data. Further experiments show that our method significantly surpasses existing forecasting tools and methodologies, demonstrating a 19.29% improvement. This result underscores the influence of external independent factors on cryptocurrency volatility.
Date: 2022-02, Revised 2024-10
New Economics Papers: this item is included in nep-cwa, nep-for, nep-mon and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2202.08967 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.08967
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().