EconPapers    
Economics at your fingertips  
 

A multivariate extension of the Misspecification-Resistant Information Criterion

Gery Andr\'es D\'iaz Rubio, Simone Giannerini and Greta Goracci

Papers from arXiv.org

Abstract: The Misspecification-Resistant Information Criterion (MRIC) proposed in [H.-L. Hsu, C.-K. Ing, H. Tong: On model selection from a finite family of possibly misspecified time series models. The Annals of Statistics. 47 (2), 1061--1087 (2019)] is a model selection criterion for univariate parametric time series that enjoys both the property of consistency and asymptotic efficiency. In this article we extend the MRIC to the case where the response is a multivariate time series and the predictor is univariate. The extension requires novel derivations based upon random matrix theory. We obtain an asymptotic expression for the mean squared prediction error matrix, the vectorial MRIC and prove the consistency of its method-of-moments estimator. Moreover, we prove its asymptotic efficiency. Finally, we show with an example that, in presence of misspecification, the vectorial MRIC identifies the best predictive model whereas traditional information criteria like AIC or BIC fail to achieve the task.

Date: 2022-02
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2202.09225 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.09225

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2202.09225