EconPapers    
Economics at your fingertips  
 

Multivariate Tie-breaker Designs

Tim P. Morrison and Art B. Owen

Papers from arXiv.org

Abstract: In a tie-breaker design (TBD), subjects with high values of a running variable are given some (usually desirable) treatment, subjects with low values are not, and subjects in the middle are randomized. TBDs are intermediate between regression discontinuity designs (RDDs) and randomized controlled trials (RCTs). TBDs allow a tradeoff between the resource allocation efficiency of an RDD and the statistical efficiency of an RCT. We study a model where the expected response is one multivariate regression for treated subjects and another for control subjects. We propose a prospective D-optimality, analogous to Bayesian optimal design, to understand design tradeoffs without reference to a specific data set. For given covariates, we show how to use convex optimization to choose treatment probabilities that optimize this criterion. We can incorporate a variety of constraints motivated by economic and ethical considerations. In our model, D-optimality for the treatment effect coincides with D-optimality for the whole regression, and, without constraints, an RCT is globally optimal. We show that a monotonicity constraint favoring more deserving subjects induces sparsity in the number of distinct treatment probabilities. We apply the convex optimization solution to a semi-synthetic example involving triage data from the MIMIC-IV-ED database.

Date: 2022-02, Revised 2024-10
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2202.10030 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.10030

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2202.10030