EconPapers    
Economics at your fingertips  
 

Can LSTM outperform volatility-econometric models?

German Rodikov and Nino Antulov-Fantulin

Papers from arXiv.org

Abstract: Volatility prediction for financial assets is one of the essential questions for understanding financial risks and quadratic price variation. However, although many novel deep learning models were recently proposed, they still have a "hard time" surpassing strong econometric volatility models. Why is this the case? The volatility prediction task is of non-trivial complexity due to noise, market microstructure, heteroscedasticity, exogenous and asymmetric effect of news, and the presence of different time scales, among others. In this paper, we analyze the class of long short-term memory (LSTM) recurrent neural networks for the task of volatility prediction and compare it with strong volatility-econometric models.

Date: 2022-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2202.11581 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.11581

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2202.11581