The classification of preordered spaces in terms of monotones: complexity and optimization
Pedro Hack,
Daniel A. Braun and
Sebastian Gottwald
Papers from arXiv.org
Abstract:
The study of complexity and optimization in decision theory involves both partial and complete characterizations of preferences over decision spaces in terms of real-valued monotones. With this motivation, and following the recent introduction of new classes of monotones, like injective monotones or strict monotone multi-utilities, we present the classification of preordered spaces in terms of both the existence and cardinality of real-valued monotones and the cardinality of the quotient space. In particular, we take advantage of a characterization of real-valued monotones in terms of separating families of increasing sets in order to obtain a more complete classification consisting of classes that are strictly different from each other. As a result, we gain new insight into both complexity and optimization, and clarify their interplay in preordered spaces.
Date: 2022-02, Revised 2022-08
New Economics Papers: this item is included in nep-ban
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2202.12106 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.12106
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().