EconPapers    
Economics at your fingertips  
 

Sequential asset ranking in nonstationary time series

Gabriel Borrageiro

Papers from arXiv.org

Abstract: We create a ranking algorithm, the naive Bayes asset ranker. Our algorithm computes the posterior probability that individual assets will be ranked higher than other portfolio constituents. Unlike earlier algorithms, such as the weighted majority, our algorithm allows poor-performing experts to have increased weight when they start performing well. We outperform the long-only holding of the S&P 500 index and a regress-then-rank baseline.

Date: 2022-02, Revised 2022-10
New Economics Papers: this item is included in nep-ban and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2202.12186 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.12186

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2202.12186