EconPapers    
Economics at your fingertips  
 

A general characterization of optimal tie-breaker designs

Harrison H. Li and Art B. Owen

Papers from arXiv.org

Abstract: Tie-breaker designs trade off a statistical design objective with short-term gain from preferentially assigning a binary treatment to those with high values of a running variable $x$. The design objective is any continuous function of the expected information matrix in a two-line regression model, and short-term gain is expressed as the covariance between the running variable and the treatment indicator. We investigate how to specify design functions indicating treatment probabilities as a function of $x$ to optimize these competing objectives, under external constraints on the number of subjects receiving treatment. Our results include sharp existence and uniqueness guarantees, while accommodating the ethically appealing requirement that treatment probabilities are non-decreasing in $x$. Under such a constraint, there always exists an optimal design function that is constant below and above a single discontinuity. When the running variable distribution is not symmetric or the fraction of subjects receiving the treatment is not $1/2$, our optimal designs improve upon a $D$-optimality objective without sacrificing short-term gain, compared to the three level tie-breaker designs of Owen and Varian (2020) that fix treatment probabilities at $0$, $1/2$, and $1$. We illustrate our optimal designs with data from Head Start, an early childhood government intervention program.

Date: 2022-02, Revised 2022-10
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2202.12511 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2202.12511

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2202.12511