Satellite Image and Machine Learning based Knowledge Extraction in the Poverty and Welfare Domain
Ola Hall,
Mattias Ohlsson and
Thortseinn R\"ognvaldsson
Papers from arXiv.org
Abstract:
Recent advances in artificial intelligence and machine learning have created a step change in how to measure human development indicators, in particular asset based poverty. The combination of satellite imagery and machine learning has the capability to estimate poverty at a level similar to what is achieved with workhorse methods such as face-to-face interviews and household surveys. An increasingly important issue beyond static estimations is whether this technology can contribute to scientific discovery and consequently new knowledge in the poverty and welfare domain. A foundation for achieving scientific insights is domain knowledge, which in turn translates into explainability and scientific consistency. We review the literature focusing on three core elements relevant in this context: transparency, interpretability, and explainability and investigate how they relates to the poverty, machine learning and satellite imagery nexus. Our review of the field shows that the status of the three core elements of explainable machine learning (transparency, interpretability and domain knowledge) is varied and does not completely fulfill the requirements set up for scientific insights and discoveries. We argue that explainability is essential to support wider dissemination and acceptance of this research, and explainability means more than just interpretability.
Date: 2022-03
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2203.01068 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2203.01068
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().