EconPapers    
Economics at your fingertips  
 

A reverse ES (CVaR) optimization formula

Yuanying Guan, Zhanyi Jiao and Ruodu Wang

Papers from arXiv.org

Abstract: The celebrated Expected Shortfall (ES) optimization formula implies that ES at a fixed probability level is the minimum of a linear real function plus a scaled mean excess function. We establish a reverse ES optimization formula, which says that a mean excess function at any fixed threshold is the maximum of an ES curve minus a linear function. Despite being a simple result, this formula reveals elegant symmetries between the mean excess function and the ES curve, as well as their optimizers. The reverse ES optimization formula is closely related to the Fenchel-Legendre transforms, and our formulas are generalized from ES to optimized certainty equivalents, a popular class of convex risk measures. We analyze worst-case values of the mean excess function under two popular settings of model uncertainty to illustrate the usefulness of the reverse ES optimization formula, and this is further demonstrated with an application using insurance datasets.

Date: 2022-03, Revised 2023-05
New Economics Papers: this item is included in nep-fmk, nep-ias and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2203.02599 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2203.02599

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2203.02599