EconPapers    
Economics at your fingertips  
 

Quantum Advantage for Multi-option Portfolio Pricing and Valuation Adjustments

Jeong Yu Han, Bin Cheng, Dinh-Long Vu and Patrick Rebentrost

Papers from arXiv.org

Abstract: A critical problem in the financial world deals with the management of risk, from regulatory risk to portfolio risk. Many such problems involve the analysis of securities modelled by complex dynamics that cannot be captured analytically, and hence rely on numerical techniques that simulate the stochastic nature of the underlying variables. These techniques may be computationally difficult or demanding. Hence, improving these methods offers a variety of opportunities for quantum algorithms. In this work, we study the problem of Credit Valuation Adjustments (CVAs) which has significant importance in the valuation of derivative portfolios. As a variant, we also consider the problem of pricing a portfolio of many different financial options. We propose quantum algorithms that accelerate statistical sampling processes to approximate the price of the multi-option portfolio and the CVA under different measures of dispersion. Technically, our algorithms are based on enhancing the quantum Monte Carlo (QMC) algorithms by Montanaro with an unbiased version of quantum amplitude estimation. We analyse the conditions under which we may employ these techniques and demonstrate the application of QMC techniques on CVA approximation when particular bounds for the variance of CVA are known.

Date: 2022-03, Revised 2025-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2203.04924 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2203.04924

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-03
Handle: RePEc:arx:papers:2203.04924