Indirect Inference for Nonlinear Panel Models with Fixed Effects
Shuowen Chen
Papers from arXiv.org
Abstract:
Fixed effect estimators of nonlinear panel data models suffer from the incidental parameter problem. This leads to two undesirable consequences in applied research: (1) point estimates are subject to large biases, and (2) confidence intervals have incorrect coverages. This paper proposes a simulation-based method for bias reduction. The method simulates data using the model with estimated individual effects, and finds values of parameters by equating fixed effect estimates obtained from observed and simulated data. The asymptotic framework provides consistency, bias correction, and asymptotic normality results. An application and simulations to female labor force participation illustrates the finite-sample performance of the method.
Date: 2022-03, Revised 2022-04
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2203.10683 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2203.10683
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().