EconPapers    
Economics at your fingertips  
 

Lyapunov based Stochastic Stability of Human-Machine Interaction: A Quantum Decision System Approach

Luke Snow, Shashwat Jain and Vikram Krishnamurthy

Papers from arXiv.org

Abstract: In mathematical psychology, decision makers are modeled using the Lindbladian equations from quantum mechanics to capture important human-centric features such as order effects and violation of the sure thing principle. We consider human-machine interaction involving a quantum decision maker (human) and a controller (machine). Given a sequence of human decisions over time, how can the controller dynamically provide input messages to adapt these decisions so as to converge to a specific decision? We show via novel stochastic Lyapunov arguments how the Lindbladian dynamics of the quantum decision maker can be controlled to converge to a specific decision asymptotically. Our methodology yields a useful mathematical framework for human-sensor decision making. The stochastic Lyapunov results are also of independent interest as they generalize recent results in the literature.

Date: 2022-03
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2204.00059 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.00059

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2204.00059