Lyapunov based Stochastic Stability of Human-Machine Interaction: A Quantum Decision System Approach
Luke Snow,
Shashwat Jain and
Vikram Krishnamurthy
Papers from arXiv.org
Abstract:
In mathematical psychology, decision makers are modeled using the Lindbladian equations from quantum mechanics to capture important human-centric features such as order effects and violation of the sure thing principle. We consider human-machine interaction involving a quantum decision maker (human) and a controller (machine). Given a sequence of human decisions over time, how can the controller dynamically provide input messages to adapt these decisions so as to converge to a specific decision? We show via novel stochastic Lyapunov arguments how the Lindbladian dynamics of the quantum decision maker can be controlled to converge to a specific decision asymptotically. Our methodology yields a useful mathematical framework for human-sensor decision making. The stochastic Lyapunov results are also of independent interest as they generalize recent results in the literature.
Date: 2022-03
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2204.00059 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.00059
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().