EconPapers    
Economics at your fingertips  
 

Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach

Yuki Oyama

Papers from arXiv.org

Abstract: Although the recursive logit (RL) model has been recently popular and has led to many applications and extensions, an important numerical issue with respect to the computation of value functions remains unsolved. This issue is particularly significant for model estimation, during which the parameters are updated every iteration and may violate the feasibility condition of the value function. To solve this numerical issue of the value function in the model estimation, this study performs an extensive analysis of a prism-constrained RL (Prism-RL) model proposed by Oyama and Hato (2019), which has a path set constrained by the prism defined based upon a state-extended network representation. The numerical experiments have shown two important properties of the Prism-RL model for parameter estimation. First, the prism-based approach enables estimation regardless of the initial and true parameter values, even in cases where the original RL model cannot be estimated due to the numerical problem. We also successfully captured a positive effect of the presence of street green on pedestrian route choice in a real application. Second, the Prism-RL model achieved better fit and prediction performance than the RL model, by implicitly restricting paths with large detour or many loops. Defining the prism-based path set in a data-oriented manner, we demonstrated the possibility of the Prism-RL model describing more realistic route choice behavior. The capture of positive network attributes while retaining the diversity of path alternatives is important in many applications such as pedestrian route choice and sequential destination choice behavior, and thus the prism-based approach significantly extends the practical applicability of the RL model.

Date: 2022-04, Revised 2023-01
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Published in Transportation Research Part C: Emerging Technologies 147 (2023) 104014

Downloads: (external link)
http://arxiv.org/pdf/2204.01215 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.01215

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2204.01215