EconPapers    
Economics at your fingertips  
 

A Bootstrap-Assisted Self-Normalization Approach to Inference in Cointegrating Regressions

Karsten Reichold and Carsten Jentsch

Papers from arXiv.org

Abstract: Traditional inference in cointegrating regressions requires tuning parameter choices to estimate a long-run variance parameter. Even in case these choices are "optimal", the tests are severely size distorted. We propose a novel self-normalization approach, which leads to a nuisance parameter free limiting distribution without estimating the long-run variance parameter directly. This makes our self-normalized test tuning parameter free and considerably less prone to size distortions at the cost of only small power losses. In combination with an asymptotically justified vector autoregressive sieve bootstrap to construct critical values, the self-normalization approach shows further improvement in small to medium samples when the level of error serial correlation or regressor endogeneity is large. We illustrate the usefulness of the bootstrap-assisted self-normalized test in empirical applications by analyzing the validity of the Fisher effect in Germany and the United States.

Date: 2022-04
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/2204.01373 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.01373

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2204.01373