EconPapers    
Economics at your fingertips  
 

Stochastic volatility modeling of high-frequency CSI 300 index and dynamic jump prediction driven by machine learning

Xianfei Hui, Baiqing Sun, Indranil SenGupta, Yan Zhou and Hui Jiang

Papers from arXiv.org

Abstract: This paper models stochastic process of price time series of CSI 300 index in Chinese financial market, analyzes volatility characteristics of intraday high-frequency price data. In the new generalized Barndorff-Nielsen and Shephard model, the lag caused by asynchrony of market information is considered, and the problem of lack of long-term dependence is solved. To speed up the valuation process, several machine learning and deep learning algorithms are used to estimate parameter and evaluate forecast results. Tracking historical jumps of different magnitudes offers promising avenues for simulating dynamic price processes and predicting future jumps. Numerical results show that the deterministic component of stochastic volatility processes would always be captured over short and longer-term windows. Research finding could be suitable for influence investors and regulators interested in predicting market dynamics based on realized volatility.

Date: 2022-04, Revised 2023-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Published in Electronic Research Archive, 2023

Downloads: (external link)
http://arxiv.org/pdf/2204.02891 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.02891

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2023-01-19
Handle: RePEc:arx:papers:2204.02891