Two-step estimation in linear regressions with adaptive learning
Alexander Mayer
Papers from arXiv.org
Abstract:
Weak consistency and asymptotic normality of the ordinary least-squares estimator in a linear regression with adaptive learning is derived when the crucial, so-called, `gain' parameter is estimated in a first step by nonlinear least squares from an auxiliary model. The singular limiting distribution of the two-step estimator is normal and in general affected by the sampling uncertainty from the first step. However, this `generated-regressor' issue disappears for certain parameter combinations.
Date: 2022-04, Revised 2022-11
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2204.05298 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.05298
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().