Ensemble learning for portfolio valuation and risk management
Lotfi Boudabsa and
Damir Filipovi\'c
Papers from arXiv.org
Abstract:
We introduce an ensemble learning method for dynamic portfolio valuation and risk management building on regression trees. We learn the dynamic value process of a derivative portfolio from a finite sample of its cumulative cash flow. The estimator is given in closed form. The method is fast and accurate, and scales well with sample size and path space dimension. The method can also be applied to Bermudan style options. Numerical experiments show good results in moderate dimension problems.
Date: 2022-04
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2204.05926 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.05926
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).