EconPapers    
Economics at your fingertips  
 

Optimal Decision Rules when Payoffs are Partially Identified

Timothy Christensen, Hyungsik Roger Moon and Frank Schorfheide

Papers from arXiv.org

Abstract: We derive optimal statistical decision rules for discrete choice problems when payoffs depend on a partially-identified parameter $\theta$ and the decision maker can use a point-identified parameter $P$ to deduce restrictions on $\theta$. Leading examples include optimal treatment choice under partial identification and optimal pricing with rich unobserved heterogeneity. Our optimal decision rules minimize the maximum risk or regret over the identified set of payoffs conditional on $P$ and use the data efficiently to learn about $P$. We discuss implementation of optimal decision rules via the bootstrap and Bayesian methods, in both parametric and semiparametric models. We provide detailed applications to treatment choice and optimal pricing. Using a limits of experiments framework, we show that our optimal decision rules can dominate seemingly natural alternatives. Our asymptotic approach is well suited for realistic empirical settings in which the derivation of finite-sample optimal rules is intractable.

Date: 2022-04, Revised 2023-05
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2204.11748 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.11748

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2204.11748