Sequence-Based Target Coin Prediction for Cryptocurrency Pump-and-Dump
Sihao Hu,
Zhen Zhang,
Shengliang Lu,
Bingsheng He and
Zhao Li
Papers from arXiv.org
Abstract:
With the proliferation of pump-and-dump schemes (P&Ds) in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance to alert potentially susceptible investors. In this paper, we focus on predicting the pump probability of all coins listed in the target exchange before a scheduled pump time, which we refer to as the target coin prediction task. Firstly, we conduct a comprehensive study of the latest 709 P&D events organized in Telegram from Jan. 2019 to Jan. 2022. Our empirical analysis reveals some interesting patterns of P&Ds, such as that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity. Here channel refers a form of group in Telegram that is frequently used to coordinate P&D events. This observation inspires us to develop a novel sequence-based neural network, dubbed SNN, which encodes a channel's P&D event history into a sequence representation via the positional attention mechanism to enhance the prediction accuracy. Positional attention helps to extract useful information and alleviates noise, especially when the sequence length is long. Extensive experiments verify the effectiveness and generalizability of proposed methods. Additionally, we release the code and P&D dataset on GitHub: https://github.com/Bayi-Hu/Pump-and-Dump-Detection-on-Cryptocurrency, and regularly update the dataset.
Date: 2022-04, Revised 2023-04
New Economics Papers: this item is included in nep-big, nep-cmp and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2204.12929 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.12929
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).