EconPapers    
Economics at your fingertips  
 

High-Frequency-Based Volatility Model with Network Structure

Huiling Yuan, Guodong Li and Junhui Wang

Papers from arXiv.org

Abstract: This paper introduces one new multivariate volatility model that can accommodate an appropriately defined network structure based on low-frequency and high-frequency data. The model reduces the number of unknown parameters and the computational complexity substantially. The model parameterization and iterative multistep-ahead forecasts are discussed and the targeting reparameterization is also presented. Quasi-likelihood functions for parameter estimation are proposed and their asymptotic properties are established. A series of simulation experiments are carried out to assess the performance of the estimation in finite samples. An empirical example is demonstrated that the proposed model outperforms the network GARCH model, with the gains being particularly significant at short forecast horizons.

Date: 2022-04
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-mst, nep-net and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2204.12933 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2204.12933

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2204.12933