EconPapers    
Economics at your fingertips  
 

Benchmarking Econometric and Machine Learning Methodologies in Nowcasting

Daniel Hopp

Papers from arXiv.org

Abstract: Nowcasting can play a key role in giving policymakers timelier insight to data published with a significant time lag, such as final GDP figures. Currently, there are a plethora of methodologies and approaches for practitioners to choose from. However, there lacks a comprehensive comparison of these disparate approaches in terms of predictive performance and characteristics. This paper addresses that deficiency by examining the performance of 12 different methodologies in nowcasting US quarterly GDP growth, including all the methods most commonly employed in nowcasting, as well as some of the most popular traditional machine learning approaches. Performance was assessed on three different tumultuous periods in US economic history: the early 1980s recession, the 2008 financial crisis, and the COVID crisis. The two best performing methodologies in the analysis were long short-term memory artificial neural networks (LSTM) and Bayesian vector autoregression (BVAR). To facilitate further application and testing of each of the examined methodologies, an open-source repository containing boilerplate code that can be applied to different datasets is published alongside the paper, available at: github.com/dhopp1/nowcasting_benchmark.

Date: 2022-05
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2205.03318 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.03318

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2205.03318