Policy Choice in Time Series by Empirical Welfare Maximization
Toru Kitagawa,
Weining Wang and
Mengshan Xu
Papers from arXiv.org
Abstract:
This paper develops a novel method for policy choice in a dynamic setting where the available data is a multi-variate time series. Building on the statistical treatment choice framework, we propose Time-series Empirical Welfare Maximization (T-EWM) methods to estimate an optimal policy rule by maximizing an empirical welfare criterion constructed using nonparametric potential outcome time series. We characterize conditions under which T-EWM consistently learns a policy choice that is optimal in terms of conditional welfare given the time-series history. We derive a nonasymptotic upper bound for conditional welfare regret. To illustrate the implementation and uses of T-EWM, we perform simulation studies and apply the method to estimate optimal restriction rules against Covid-19.
Date: 2022-05, Revised 2024-12
New Economics Papers: this item is included in nep-cba, nep-ecm and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2205.03970 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.03970
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().