Robust Data-Driven Decisions Under Model Uncertainty
Xiaoyu Cheng
Papers from arXiv.org
Abstract:
When sample data are governed by an unknown sequence of independent but possibly non-identical distributions, the data-generating process (DGP) in general cannot be perfectly identified from the data. For making decisions facing such uncertainty, this paper presents a novel approach by studying how the data can best be used to robustly improve decisions. That is, no matter which DGP governs the uncertainty, one can make a better decision than without using the data. I show that common inference methods, e.g., maximum likelihood and Bayesian updating cannot achieve this goal. To address, I develop new updating rules that lead to robustly better decisions either asymptotically almost surely or in finite sample with a pre-specified probability. Especially, they are easy to implement as are given by simple extensions of the standard statistical procedures in the case where the possible DGPs are all independent and identically distributed. Finally, I show that the new updating rules also lead to more intuitive conclusions in existing economic models such as asset pricing under ambiguity.
Date: 2022-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2205.04573 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.04573
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().