Calibrating for Class Weights by Modeling Machine Learning
Andrew Caplin,
Daniel Martin and
Philip Marx
Papers from arXiv.org
Abstract:
A much studied issue is the extent to which the confidence scores provided by machine learning algorithms are calibrated to ground truth probabilities. Our starting point is that calibration is seemingly incompatible with class weighting, a technique often employed when one class is less common (class imbalance) or with the hope of achieving some external objective (cost-sensitive learning). We provide a model-based explanation for this incompatibility and use our anthropomorphic model to generate a simple method of recovering likelihoods from an algorithm that is miscalibrated due to class weighting. We validate this approach in the binary pneumonia detection task of Rajpurkar, Irvin, Zhu, et al. (2017).
Date: 2022-05, Revised 2022-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2205.04613 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.04613
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().