Externally Valid Policy Choice
Christopher Adjaho and
Timothy Christensen
Papers from arXiv.org
Abstract:
We consider the problem of learning personalized treatment policies that are externally valid or generalizable: they perform well in other target populations besides the experimental (or training) population from which data are sampled. We first show that welfare-maximizing policies for the experimental population are robust to shifts in the distribution of outcomes (but not characteristics) between the experimental and target populations. We then develop new methods for learning policies that are robust to shifts in outcomes and characteristics. In doing so, we highlight how treatment effect heterogeneity within the experimental population affects the generalizability of policies. Our methods may be used with experimental or observational data (where treatment is endogenous). Many of our methods can be implemented with linear programming.
Date: 2022-05, Revised 2023-07
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2205.05561 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.05561
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().