EconPapers    
Economics at your fingertips  
 

Causal Estimation of Position Bias in Recommender Systems Using Marketplace Instruments

Rina Friedberg, Karthik Rajkumar, Jialiang Mao, Qian Yao, YinYin Yu and Min Liu

Papers from arXiv.org

Abstract: Information retrieval systems, such as online marketplaces, news feeds, and search engines, are ubiquitous in today's digital society. They facilitate information discovery by ranking retrieved items on predicted relevance, i.e. likelihood of interaction (click, share) between users and items. Typically modeled using past interactions, such rankings have a major drawback: interaction depends on the attention items receive. A highly-relevant item placed outside a user's attention could receive little interaction. This discrepancy between observed interaction and true relevance is termed the position bias. Position bias degrades relevance estimation and when it compounds over time, it can silo users into false relevant items, causing marketplace inefficiencies. Position bias may be identified with randomized experiments, but such an approach can be prohibitive in cost and feasibility. Past research has also suggested propensity score methods, which do not adequately address unobserved confounding; and regression discontinuity designs, which have poor external validity. In this work, we address these concerns by leveraging the abundance of A/B tests in ranking evaluations as instrumental variables. Historical A/B tests allow us to access exogenous variation in rankings without manually introducing them, harming user experience and platform revenue. We demonstrate our methodology in two distinct applications at LinkedIn - feed ads and the People-You-May-Know (PYMK) recommender. The marketplaces comprise users and campaigns on the ads side, and invite senders and recipients on PYMK. By leveraging prior experimentation, we obtain quasi-experimental variation in item rankings that is orthogonal to user relevance. Our method provides robust position effect estimates that handle unobserved confounding well, greater generalizability, and easily extends to other information retrieval systems.

Date: 2022-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2205.06363 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.06363

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2205.06363