Treatment Choice with Nonlinear Regret
Toru Kitagawa,
Sokbae (Simon) Lee and
Chen Qiu
Papers from arXiv.org
Abstract:
The literature focuses on the mean of welfare regret, which can lead to undesirable treatment choice due to sensitivity to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of regret and show that singleton rules are not essentially complete for nonlinear regret. Focusing on mean square regret, we derive closed-form fractions for finite-sample Bayes and minimax optimal rules. Our approach is grounded in decision theory and extends to limit experiments. The treatment fractions can be viewed as the strength of evidence favoring treatment. We apply our framework to a normal regression model and sample size calculation.
Date: 2022-05, Revised 2024-10
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2205.08586 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.08586
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().