Robust Distortion Risk Measures
Carole Bernard,
Silvana M. Pesenti and
Steven Vanduffel ()
Papers from arXiv.org
Abstract:
The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball - specified through the Wasserstein distance - around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterisation of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimisation and to model risk assessment.
Date: 2022-05, Revised 2023-03
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://arxiv.org/pdf/2205.08850 Latest version (application/pdf)
Related works:
Journal Article: Robust distortion risk measures (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.08850
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().