Probabilistic forecasting of German electricity imbalance prices
Micha{\l} Narajewski
Papers from arXiv.org
Abstract:
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation. To address this challenge, the energy exchanges have been developing further trading possibilities, especially the intraday and balancing markets. For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest. Therefore, in this manuscript we conduct a very short-term probabilistic forecasting of imbalance prices, contributing to the scarce literature in this novel subject. The forecasting is performed 30 minutes before the delivery, so that the trader might still choose the trading place. The distribution of the imbalance prices is modelled and forecasted using methods well-known in the electricity price forecasting literature: lasso with bootstrap, gamlss, and probabilistic neural networks. The methods are compared with a naive benchmark in a meaningful rolling window study. The results provide evidence of the efficiency between the intraday and balancing markets as the sophisticated methods do not substantially overperform the intraday continuous price index. On the other hand, they significantly improve the empirical coverage. The analysis was conducted on the German market, however it could be easily applied to any other market of similar structure.
Date: 2022-05
New Economics Papers: this item is included in nep-cmp, nep-ene, nep-for and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2205.11439 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.11439
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().