EconPapers    
Economics at your fingertips  
 

Identification of Auction Models Using Order Statistics

Yao Luo and Ruli Xiao

Papers from arXiv.org

Abstract: Auction data often contain information on only the most competitive bids as opposed to all bids. The usual measurement error approaches to unobserved heterogeneity are inapplicable due to dependence among order statistics. We bridge this gap by providing a set of positive identification results. First, we show that symmetric auctions with discrete unobserved heterogeneity are identifiable using two consecutive order statistics and an instrument. Second, we extend the results to ascending auctions with unknown competition and unobserved heterogeneity.

Date: 2022-05, Revised 2023-04
New Economics Papers: this item is included in nep-com and nep-des
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2205.12917 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2205.12917

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2205.12917