EconPapers    
Economics at your fingertips  
 

Bayesian and Frequentist Inference for Synthetic Controls

Ignacio Martinez and Jaume Vives-i-Bastida

Papers from arXiv.org

Abstract: The synthetic control method has become a widely popular tool to estimate causal effects with observational data. Despite this, inference for synthetic control methods remains challenging. Often, inferential results rely on linear factor model data generating processes. In this paper, we characterize the conditions on the factor model primitives (the factor loadings) for which the statistical risk minimizers are synthetic controls (in the simplex). Then, we propose a Bayesian alternative to the synthetic control method that preserves the main features of the standard method and provides a new way of doing valid inference. We explore a Bernstein-von Mises style result to link our Bayesian inference to the frequentist inference. For linear factor model frameworks we show that a maximum likelihood estimator (MLE) of the synthetic control weights can consistently estimate the predictive function of the potential outcomes for the treated unit and that our Bayes estimator is asymptotically close to the MLE in the total variation sense. Through simulations, we show that there is convergence between the Bayes and frequentist approach even in sparse settings. Finally, we apply the method to re-visit the study of the economic costs of the German re-unification and the Catalan secession movement. The Bayesian synthetic control method is available in the bsynth R-package.

Date: 2022-06, Revised 2024-07
New Economics Papers: this item is included in nep-dem and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2206.01779 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.01779

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2206.01779