Collaborative search and autonomous task allocation in organizations of learning agents
Stephan Leitner
Papers from arXiv.org
Abstract:
This paper introduces a model of multi-unit organizations with either static structures, i.e., they are designed top-down following classical approaches to organizational design, or dynamic structures, i.e., the structures emerge over time from micro-level decisions. In the latter case, the units are capable of learning about the technical interdependencies of the task they face, and they use their knowledge by adapting the task allocation from time to time. In both static and dynamic organizations, searching for actions to increase the performance can either be carried out individually or collaboratively. The results indicate that (i) collaborative search processes can help overcome the adverse effects of inefficient task allocations as long as there is an internal fit with other organizational design elements, and (ii) for dynamic organizations, the emergent task allocation does not necessarily mirror the technical interdependencies of the task the organizations face, even though the same (or even higher) performances are achieved.
Date: 2022-06, Revised 2022-09
New Economics Papers: this item is included in nep-dem
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2206.02142 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.02142
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().