EconPapers    
Economics at your fingertips  
 

Relative cluster entropy for power-law correlated sequences

A. Carbone and L. Ponta

Papers from arXiv.org

Abstract: We propose an information-theoretical measure, the \textit{relative cluster entropy} $\mathcal{D_{C}}[P \| Q] $, to discriminate among cluster partitions characterised by probability distribution functions $P$ and $Q$. The measure is illustrated with the clusters generated by pairs of fractional Brownian motions with Hurst exponents $H_1$ and $H_2$ respectively. For subdiffusive, normal and superdiffusive sequences, the relative entropy sensibly depends on the difference between $H_1$ and $H_2$. By using the \textit{minimum relative entropy} principle, cluster sequences characterized by different correlation degrees are distinguished and the optimal Hurst exponent is selected. As a case study, real-world cluster partitions of market price series are compared to those obtained from fully uncorrelated sequences (simple Browniam motions) assumed as a model. The \textit{minimum relative cluster entropy} yields optimal Hurst exponents $H_1=0.55$, $H_1=0.57$, and $H_1=0.63$ respectively for the prices of DJIA, S\&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the analytical expression of the relative cluster entropy and the outcomes are discussed for arbitrary pairs of power-laws probability distribution functions of continuous random variables.

Date: 2022-06, Revised 2022-08
New Economics Papers: this item is included in nep-dem
References: Add references at CitEc
Citations:

Published in SciPost Phys. 13, 076 (2022)

Downloads: (external link)
http://arxiv.org/pdf/2206.02685 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.02685

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2206.02685