Topological Data Analysis Ball Mapper for Finance
Pawel Dlotko,
Wanling Qiu and
Simon Rudkin
Papers from arXiv.org
Abstract:
Finance is heavily influenced by data-driven decision-making. Meanwhile, our ability to comprehend the full informational content of data sets remains impeded by the tools we apply in analysis, especially where the data is high-dimensional. Presenting the Topological Data Analysis Ball Mapper algorithm this paper illuminates a new means of seeing the detail in data from data shape. With comparisons to existing approaches and illustrative examples, the value of the new tool is shown. Directions for employing Ball Mapper in practice are given and the benefits are reviewed.
Date: 2022-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2206.03622 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.03622
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().