Unbiased estimation of the OLS covariance matrix when the errors are clustered
Tom Boot,
Gianmaria Niccodemi and
Tom Wansbeek
Papers from arXiv.org
Abstract:
When data are clustered, common practice has become to do OLS and use an estimator of the covariance matrix of the OLS estimator that comes close to unbiasedness. In this paper we derive an estimator that is unbiased when the random-effects model holds. We do the same for two more general structures. We study the usefulness of these estimators against others by simulation, the size of the $t$-test being the criterion. Our findings suggest that the choice of estimator hardly matters when the regressor has the same distribution over the clusters. But when the regressor is a cluster-specific treatment variable, the choice does matter and the unbiased estimator we propose for the random-effects model shows excellent performance, even when the clusters are highly unbalanced.
Date: 2022-06
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2206.09644 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.09644
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().