AlphaMLDigger: A Novel Machine Learning Solution to Explore Excess Return on Investment
Jimei Shen,
Zhehu Yuan and
Yifan Jin
Papers from arXiv.org
Abstract:
How to quickly and automatically mine effective information and serve investment decisions has attracted more and more attention from academia and industry. And new challenges have arisen with the global pandemic. This paper proposes a two-phase AlphaMLDigger that effectively finds excessive returns in a highly fluctuated market. In phase 1, a deep sequential natural language processing (NLP) model is proposed to transfer Sina Microblog blogs to market sentiment. In phase 2, the predicted market sentiment is combined with social network indicator features and stock market history features to predict the stock movements with different Machine Learning models and optimizers. The results show that the ensemble models achieve an accuracy of 0.984 and significantly outperform the baseline model. In addition, we find that COVID-19 brings data shift to China's stock market.
Date: 2022-06, Revised 2022-12
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2206.11072 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.11072
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().