EconPapers    
Economics at your fingertips  
 

Detection and Forecasting of Extreme event in Stock Price Triggered by Fundamental, Technical, and External Factors

Anish Rai, Salam Rabindrajit Luwang, Md Nurujjaman, Chittaranjan Hens, Pratyay Kuila and Kanish Debnath

Papers from arXiv.org

Abstract: The sporadic large fluctuations are seen in the stock market due to changes in fundamental parameters, technical setups, and external factors. These large fluctuations are termed as Extreme Events (EE). The EEs may be positive or negative depending on the impact of these factors. During such events, the stock price time series is found to be nonstationary. Hence, the Hilbert-Huang transformation (HHT) is used to identify EEs based on their high instantaneous energy ($IE$) concentration. The analysis shows that the $IE$ concentration in the stock price is very high during both positive and negative EE with $IE>E_{\mu}+4\sigma,$ where $E_{\mu}$ and $\sigma$ are the mean energy and standard deviation of energy, respectively. Further, support vector regression is used to predict the stock price during an EE, with the close price being the most helpful input than the open-high-low-close (OHLC) inputs. The maximum prediction accuracy for one step using close price and OHLC prices are 95.98\% and 95.64\% respectively. Whereas, for the two steps prediction, the accuracies are 94.09\% and 93.58\% respectively. The EEs found from the predicted time series shows similar statistical characteristics that were obtained from the original data. The analysis emphasizes the importance of monitoring factors that lead to EEs for a compelling entry or exit strategy as investors can gain or lose significant amounts of capital due to these events.

Date: 2022-06, Revised 2023-04
New Economics Papers: this item is included in nep-fmk and nep-rmg
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2206.13860 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.13860

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2206.13860