Robust utility maximization with nonlinear continuous semimartingales
David Criens and
Lars Niemann
Papers from arXiv.org
Abstract:
In this paper we study a robust utility maximization problem in continuous time under model uncertainty. The model uncertainty is governed by a continuous semimartingale with uncertain local characteristics. Here, the differential characteristics are prescribed by a set-valued function that depends on time and path. We show that the robust utility maximization problem is in duality with a conjugate problem, and we study the existence of optimal portfolios for logarithmic, exponential and power utilities.
Date: 2022-06, Revised 2023-08
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2206.14015 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.14015
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().