EconPapers    
Economics at your fingertips  
 

Deep Multiple Instance Learning For Forecasting Stock Trends Using Financial News

Yiqi Deng and Siu Ming Yiu

Papers from arXiv.org

Abstract: A major source of information can be taken from financial news articles, which have some correlations about the fluctuation of stock trends. In this paper, we investigate the influences of financial news on the stock trends, from a multi-instance view. The intuition behind this is based on the news uncertainty of varying intervals of news occurrences and the lack of annotation in every single financial news. Under the scenario of Multiple Instance Learning (MIL) where training instances are arranged in bags, and a label is assigned for the entire bag instead of instances, we develop a flexible and adaptive multi-instance learning model and evaluate its ability in directional movement forecast of Standard & Poors 500 index on financial news dataset. Specifically, we treat each trading day as one bag, with certain amounts of news happening on each trading day as instances in each bag. Experiment results demonstrate that our proposed multi-instance-based framework gains outstanding results in terms of the accuracy of trend prediction, compared with other state-of-art approaches and baselines.

Date: 2022-06
New Economics Papers: this item is included in nep-big, nep-cmp and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2206.14452 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.14452

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2206.14452