Predicting Economic Welfare with Images on Wealth
Jeonggil Song
Papers from arXiv.org
Abstract:
Using images containing information on wealth, this research investigates that pictures are capable of reliably predicting the economic prosperity of households. Without surveys on wealth-related information and human-made standard of wealth quality that the traditional wealth-based approach relied on, this novel approach makes use of only images posted on Dollar Street as input data on household wealth across 66 countries and predicts the consumption or income level of each household using the Convolutional Neural Network (CNN) method. The best result predicts the log of consumption level with root mean squared error of 0.66 and R-squared of 0.80 in CNN regression problem. In addition, this simple model also performs well in classifying extreme poverty with an accuracy of 0.87 and F-beta score of 0.86. Since the model shows a higher performance in the extreme poverty classification when I applied the different threshold of poverty lines to countries by their income group, it is suggested that the decision of the World Bank to define poverty lines differently by income group was valid.
Date: 2022-06
New Economics Papers: this item is included in nep-big, nep-cmp and nep-for
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2206.14810 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2206.14810
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().