EconPapers    
Economics at your fingertips  
 

Promotheus: An End-to-End Machine Learning Framework for Optimizing Markdown in Online Fashion E-commerce

Eleanor Loh, Jalaj Khandelwal, Brian Regan and Duncan A. Little

Papers from arXiv.org

Abstract: Managing discount promotional events ("markdown") is a significant part of running an e-commerce business, and inefficiencies here can significantly hamper a retailer's profitability. Traditional approaches for tackling this problem rely heavily on price elasticity modelling. However, the partial information nature of price elasticity modelling, together with the non-negotiable responsibility for protecting profitability, mean that machine learning practitioners must often go through great lengths to define strategies for measuring offline model quality. In the face of this, many retailers fall back on rule-based methods, thus forgoing significant gains in profitability that can be captured by machine learning. In this paper, we introduce two novel end-to-end markdown management systems for optimising markdown at different stages of a retailer's journey. The first system, "Ithax", enacts a rational supply-side pricing strategy without demand estimation, and can be usefully deployed as a "cold start" solution to collect markdown data while maintaining revenue control. The second system, "Promotheus", presents a full framework for markdown optimization with price elasticity. We describe in detail the specific modelling and validation procedures that, within our experience, have been crucial to building a system that performs robustly in the real world. Both markdown systems achieve superior profitability compared to decisions made by our experienced operations teams in a controlled online test, with improvements of 86% (Promotheus) and 79% (Ithax) relative to manual strategies. These systems have been deployed to manage markdown at ASOS.com, and both systems can be fruitfully deployed for price optimization across a wide variety of retail e-commerce settings.

Date: 2022-07, Revised 2022-08
New Economics Papers: this item is included in nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2207.01137 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.01137

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2207.01137