EconPapers    
Economics at your fingertips  
 

Reinforcement Learning Portfolio Manager Framework with Monte Carlo Simulation

Jungyu Ahn, Sungwoo Park, Jiwoon Kim and Ju-hong Lee

Papers from arXiv.org

Abstract: Asset allocation using reinforcement learning has advantages such as flexibility in goal setting and utilization of various information. However, existing asset allocation methods do not consider the following viewpoints in solving the asset allocation problem. First, State design without considering portfolio management and financial market characteristics. Second, Model Overfitting. Third, Model training design without considering the statistical structure of financial time series data. To solve the problem of the existing asset allocation method using reinforcement learning, we propose a new reinforcement learning asset allocation method. First, the state of the portfolio managed by the model is considered as the state of the reinforcement learning agent. Second, Monte Carlo simulation data are used to increase training data complexity to prevent model overfitting. These data can have different patterns, which can increase the complexity of the data. Third, Monte Carlo simulation data are created considering various statistical structures of financial markets. We define the statistical structure of the financial market as the correlation matrix of the assets constituting the financial market. We show experimentally that our method outperforms the benchmark at several test intervals.

Date: 2022-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2207.02458 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.02458

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2022-12-17
Handle: RePEc:arx:papers:2207.02458