High Dimensional Generalised Penalised Least Squares
Ilias Chronopoulos,
Katerina Chrysikou and
George Kapetanios
Papers from arXiv.org
Abstract:
In this paper we develop inference for high dimensional linear models, with serially correlated errors. We examine Lasso under the assumption of strong mixing in the covariates and error process, allowing for fatter tails in their distribution. While the Lasso estimator performs poorly under such circumstances, we estimate via GLS Lasso the parameters of interest and extend the asymptotic properties of the Lasso under more general conditions. Our theoretical results indicate that the non-asymptotic bounds for stationary dependent processes are sharper, while the rate of Lasso under general conditions appears slower as $T,p\to \infty$. Further we employ the debiased Lasso to perform inference uniformly on the parameters of interest. Monte Carlo results support the proposed estimator, as it has significant efficiency gains over traditional methods.
Date: 2022-07, Revised 2023-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2207.07055 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.07055
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().