EconPapers    
Economics at your fingertips  
 

Efficient numerical valuation of European options under the two-asset Kou jump-diffusion model

Karel in 't Hout and Pieter Lamotte

Papers from arXiv.org

Abstract: This paper concerns the numerical solution of the two-dimensional time-dependent partial integro-differential equation (PIDE) that holds for the values of European-style options under the two-asset Kou jump-diffusion model. A main feature of this equation is the presence of a nonlocal double integral term. For its numerical evaluation, we extend a highly efficient algorithm derived by Toivanen (2008) in the case of the one-dimensional Kou integral. The acquired algorithm for the two-dimensional Kou integral has optimal computational cost: the number of basic arithmetic operations is directly proportional to the number of spatial grid points in the semidiscretization. For the effective discretization in time, we study seven contemporary operator splitting schemes of the implicit-explicit (IMEX) and the alternating direction implicit (ADI) kind. All these schemes allow for a convenient, explicit treatment of the integral term. We analyze their (von Neumann) stability. By ample numerical experiments for put-on-the-average option values, the actual convergence behavior as well as the mutual performance of the seven operator splitting schemes are investigated. Moreover, the Greeks Delta and Gamma are considered.

Date: 2022-07, Revised 2023-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2207.10060 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.10060

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2207.10060