Quantum-inspired variational algorithms for partial differential equations: Application to financial derivative pricing
Tianchen Zhao,
Chuhao Sun,
Asaf Cohen,
James Stokes and
Shravan Veerapaneni
Papers from arXiv.org
Abstract:
Variational quantum Monte Carlo (VMC) combined with neural-network quantum states offers a novel angle of attack on the curse-of-dimensionality encountered in a particular class of partial differential equations (PDEs); namely, the real- and imaginary time-dependent Schr\"odinger equation. In this paper, we present a simple generalization of VMC applicable to arbitrary time-dependent PDEs, showcasing the technique in the multi-asset Black-Scholes PDE for pricing European options contingent on many correlated underlying assets.
Date: 2022-07
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2207.10838 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.10838
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().