Misclassification in Difference-in-differences Models
Augustine Denteh and
D\'esir\'e K\'edagni
Authors registered in the RePEc Author Service: Desire Kedagni
Papers from arXiv.org
Abstract:
The difference-in-differences (DID) design is one of the most popular methods used in empirical economics research. However, there is almost no work examining what the DID method identifies in the presence of a misclassified treatment variable. This paper studies the identification of treatment effects in DID designs when the treatment is misclassified. Misclassification arises in various ways, including when the timing of a policy intervention is ambiguous or when researchers need to infer treatment from auxiliary data. We show that the DID estimand is biased and recovers a weighted average of the average treatment effects on the treated (ATT) in two subpopulations -- the correctly classified and misclassified groups. In some cases, the DID estimand may yield the wrong sign and is otherwise attenuated. We provide bounds on the ATT when the researcher has access to information on the extent of misclassification in the data. We demonstrate our theoretical results using simulations and provide two empirical applications to guide researchers in performing sensitivity analysis using our proposed methods.
Date: 2022-07, Revised 2022-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2207.11890 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2207.11890
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().