EconPapers    
Economics at your fingertips  
 

Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market

Beatrice Franzolini, Alexandros Beskos, Maria De Iorio, Warrick Poklewski Koziell and Karolina Grzeszkiewicz

Papers from arXiv.org

Abstract: Reliable estimates of volatility and correlation are fundamental in economics and finance for understanding the impact of macroeconomics events on the market and guiding future investments and policies. Dependence across financial returns is likely to be subject to sudden structural changes, especially in correspondence with major global events, such as the COVID-19 pandemic. In this work, we are interested in capturing abrupt changes over time in the dependence across US industry stock portfolios, over a time horizon that covers the COVID-19 pandemic. The selected stocks give a comprehensive picture of the US stock market. To this end, we develop a Bayesian multivariate stochastic volatility model based on a time-varying sequence of graphs capturing the evolution of the dependence structure. The model builds on the Gaussian graphical models and the random change points literature. In particular, we treat the number, the position of change points, and the graphs as object of posterior inference, allowing for sparsity in graph recovery and change point detection. The high dimension of the parameter space poses complex computational challenges. However, the model admits a hidden Markov model formulation. This leads to the development of an efficient computational strategy, based on a combination of sequential Monte-Carlo and Markov chain Monte-Carlo techniques. Model and computational development are widely applicable, beyond the scope of the application of interest in this work.

Date: 2022-08, Revised 2023-05
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2208.00952 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.00952

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2208.00952