EconPapers    
Economics at your fingertips  
 

Bootstrap inference in the presence of bias

Giuseppe Cavaliere, S\'ilvia Gon\c{c}alves, Morten Nielsen and Edoardo Zanelli ()

Papers from arXiv.org

Abstract: We consider bootstrap inference for estimators which are (asymptotically) biased. We show that, even when the bias term cannot be consistently estimated, valid inference can be obtained by proper implementations of the bootstrap. Specifically, we show that the prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order refinements, restores bootstrap validity by transforming the original bootstrap p-value into an asymptotically uniform random variable. We propose two different implementations of prepivoting (plug-in and double bootstrap), and provide general high-level conditions that imply validity of bootstrap inference. To illustrate the practical relevance and implementation of our results, we discuss five examples: (i) inference on a target parameter based on model averaging; (ii) ridge-type regularized estimators; (iii) nonparametric regression; (iv) a location model for infinite variance data; and (v) dynamic panel data models.

Date: 2022-08, Revised 2023-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2208.02028 Latest version (application/pdf)

Related works:
Journal Article: Bootstrap Inference in the Presence of Bias (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.02028

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-29
Handle: RePEc:arx:papers:2208.02028