Finite Tests from Functional Characterizations
Charles Gauthier,
Raghav Malhotra and
Agustin Troccoli Moretti
Papers from arXiv.org
Abstract:
Classically, testing whether decision makers belong to specific preference classes involves two main approaches. The first, known as the functional approach, assumes access to an entire demand function. The second, the revealed preference approach, constructs inequalities to test finite demand data. This paper bridges these methods by using the functional approach to test finite data through preference learnability results. We develop a computationally efficient algorithm that generates tests for choice data based on functional characterizations of preference families. We provide these restrictions for various applications, including homothetic and weakly separable preferences, where the latter's revealed preference characterization is provably NP-Hard. We also address choice under uncertainty, offering tests for betweenness preferences. Lastly, we perform a simulation exercise demonstrating that our tests are effective in finite samples and accurately reject demands not belonging to a specified class.
Date: 2022-08, Revised 2024-07
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2208.03737 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2208.03737
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().